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The Spin-S Blume--Capel RG Flow Diagram 
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Using the finite-size scaling renormalization group, we obtain the two-dimen- 
sional flow diagram of the Blume-Capel model for S = 1 and S = 3/2. In the first 
case our results are similar to those of mean-field theory, which predicts the 
existence of first- and second-order transitions with a tricritical point. In the 
second case, however, our results are different. While we obtain in the S= 1 case 
a phase diagram presenting a multicritical point, the mean-field approach 
predicts only a second-order transition and a critical endpoint. 
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1. I N T R O D U C T I O N  

The finite-size scaling renormalizat ion group (FSSRG) was introduced in 
ref. 1 and is based only on the finite-size scaling hypothesis, {2} with no 
further assumptions. Its main  idea is to construct  particular quantities 
scaling as L ~ in the thermodynamic  limit L--* oo, L being the linear size 
of the system. By preserving these quantities, independently of particular 
prescriptions relating states S of the largest lattice to S' of the smallest one, 
one obtains RG recursion relations without any conceptual problem. The 
construct ion of these quantit ies is based on the symmetries between the 
various ground states of the system. The FSSRG in its first version It} was 
applied to study the Ising model in hypercubic lattices. More recently, 
using it to study the three-dimensional diluted Ising model, we were able 
to find a semiunstable fixed point  in the critical frontier concentrat ion p 
versus exchange coupling J,{~} characterizing a universality class crossover 
when one goes from pure to diluted Ising ferromagnets. Moreover, the 
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specific heat exponents we obtained for the pure and diluted regimes are in 
agreement with the Harris criterionJ 4) Based on such a success, we decided 
to use the FSSRG to study the two-dimensional spin-S Blume-Capel model. 

The model is a simple generalization of the spin-l/2 Ising model, 
described by the Hamiltonian 

~r - J  ~ SiSj+DZ S ~ (1) 
<0)  i 

where J > 0  and the spins S~ have values - S ,  - S +  1 ..... S, with 2S being 
an integer. The first sum is over all nearest-neighbor sites of the lattice and 
D is the parameter of anisotropy (single-ion anisotropy). For S = 1, oYg is 
a well-studied model introduced by Blume ~5) and Capel r to describe criti- 
cal-tricritical phenomena. On the temperature-anisotropy phase diagram 
the ordered ferromagnetic and the disordered paramagnetic regions are 
separated by a phase boundary which changes character at a tricritical 
point. According to mean-field calculations, the first-order transition line 
goes to zero at D/zJ= 1/2, where z is the coordination number. This result 
can also be exactly obtained by simple reasoning about the ground states 
(see Section 2). Several approximate schemes have been used to stablish 
the thermodynamic behavior of this model (see references in ref. 7). For 
arbitrary spin S, the model has been less studied. A recent mean-field 
solution 171 of the general spin-S Blume-Capel model shows that for integer 
spins there exist one tricritical point and a disordered phase at low tem- 
perature which are not present for semi-integer spins. There exists at T =  0 
a multiphase point from which a number of first-order boundaries spread 
out. In particular, for the spin-3/2 model there is one first-order line ending 
at an isolated critical point, inside the ordered ferromagnetic region. In the 
following section we analyze the model for S =  1. The various phase 
regions are qualitatively determined. In Section 3 we introduce the method. 
A more detailed description can be found in ref, 3. In Section 4 we present 
the results for the flow diagram for the S =  1 and S =  3/2 models in the 
two-dimensional square lattice. Finally, in Section 5 we present some 
concluding remarks. 

2. ANALYSIS FOR S---1 

Before explaining the FSSRG method, it is interesting to investigate 
what information can be extracted in advance from the Hamiltonian. We 
start rewriting Eq. ( l )  as 

( i j )  i 
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where S i=  +1,  0, or - 1 ,  r r i = 2 S ~ -  1 = +1 or - 1 ,  and @= -D/2.  It is 
easy to verify that these two Hamiltonians are equivalent up to an additive 
constant. The following information can be obtained from Eq. (2): 

(i) The symmetry J,--* - J .  Dividing the lattice into two sublattices 
(chessboard), inverting all the spins of one sublattice, and changing the 
sign of J, the system remains invariant. That is, the ferromagnetic order is 
symmetric to the antiferromagnetic one. Therefore, it is enough to study 
the J1> 0 half of the phase diagram. 

(ii) The limit when the temperature T ~ 0 with ~ < 0. In this limit the 
system is in one of its three possible ground states, one corresponding to 
all spins S i=  1, the other to all S~= - 1 ,  and the third one to all spins 
S ;=  0. For the first and second ground states the Hamiltonian per site can 
be written as 

--~F/N= 2 J +  @ (3) 

where the factor 2 corresponds to the ratio (number of bonds)/(number of 
sites) for a square lattice. For the third ground state (all S t = 0 )  the 
Hamiltonian per site is given by 

- ~ z / N  = - ~ ( 4 )  

It is important to understand that the two former ground states correspond 
to a usual ordered ferromagnetic phase with a nonzero magnetization. The 
third ground state, however, corresponds to an ordered phase, but with 
zero magnetization, with the majority of the spins equal to zero. A first- 
order transition will occur for XF= YCZ, that is, 

2 J + ~ =  - ~ J + ~ = 0  (5) 

In this way the phase diagram J/T versus ~ / T  in the limit J, - ~ - - *  oo 
corresponds to a straight line given by J/T+ ~ / T =  O. For (J/T+ ~ /T)> 0 
the system is in the usual ferromagnetic phase, and for (J/T+ ~ /T )<  0 it 
is in the "zero phase" mentioned above. This result is also reproduced 
within mean-field theory, t5-7) 

(iii) The limit ~ ---, oo. In this case S~ = + 1 or - 1, and on this Ising 
limit we find J,.=(1/2)ln(x/~+l)=0.4407 and v = l  for the critical 
coupling and correlation length exponent, respectively. Hereafter, we take 
T =  1 for simplicity. 

(iv) The limit J--* O. In this limit the spins are independent and we 
can write 

Z=ZiU= (2e ~ + e - ~ )  N oc (e~+{l/z)ln2 + e-~-(l/2)tn 2) N 
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Therefore there is a "transition" from the zero phase to a paramagnetic 
phase when ~ + 1/2 In 2 = - ~  - 1/2 In 2, that is, ~c = -1/2 In 2 = - 0.3466. 
This is a phase transition induced by an external field, and corresponds to 
no singularities in the thermodynamic quantities. Since both phases have 
zero magnetization, they cannot be distinguished through a mean-field 
approach, which usually measures the magnetization to identify the dif- 
ferent phases of the system. 

3. THE M E T H O D  

One of the most important advantages of the FSSRG is that one does 
not need to adopt any particular recipe of the type 

exp[" - ~ ' (  S')/T] = ~, P( S, S') exp[ - 9tt~( S)/T] 
S 

relating the spin states S of the original system to the spin states S' 
of a renormalized system. In traditional real-space renormalization group 
(RSRG) implementations, the choice of a particular weight function 
P(S, S'), e.g., the so-called majority rule, is generally based on plausibility 
arguments, and involves uncontrollable approximations. Based on this 
weakness, many criticisms have been made about RSRG since its intro- 
duction 20 years ago. ~41 In spite of these criticisms, RSRG has been an 
important investigation tool since then. On the other hand, FSSRG is free 
from these criticisms and shares with RSRG some good features, such as 
the possibility of extracting qualitative information from multiparameter 
RG flux diagrams, including crossovers, universality classes, universality 
breakings, multicriticalities, orders of transitions, etc. Other unpleasant 
consequences of particular weight functions, such as the so-called prolifera- 
tion of parameters, are absent from FSSRG. 

In order to explain the method, we will consider a d-dimensional 
hypercubic lattice with its cover and bottom (d-1)-dimensional  hyper- 
surfaces. There are two quantities to be preserved in the renormalization 
process: the magnetic quantity .~ and the thermal quantity Y--. The first one 
is defined by 

.~ = (sign ( ~  a , ) )  (6) 

where ( ... ) means the canonical thermodynamic average, and sign(x)= 
- l ,  0, or + 1 for x < 0, x = 0, and x > 0, respectively. This quantity is 
referred to as a magnetic quantity because it has a nonzero value only 
in the presence of a magnetic field (which in this model is the field ~).  In 
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this way it is related to the symmetry breaking of the system. The other 
quantity is defined, through the surfaces of the lattice, as 

#- = </~(top), #(bottom) > (7) 

where/~ = + 1 if the majority of the spins S i = + 1, /~ = 0 if the majority of 
the spins Si = 0, and p = - 1 if the majority of the spins St = - 1. That is, 
the quantity g- is related to the sign of the majority of the spins of the top 
and bottom hypersurfaces. There are three possible values of /~ because 
there are also three different possible ground states. If we were studying the 
Ising model (Si= _ 1/2), for instance, we should admit only two possible 
values for p. As extensively explained in ref. 3, the quantity ~-- is related 
to ergodicity or long-range order breaking. It vanishes above Tc (para- 
magnetic phase) and equals 1 below Tc (ordered phase) independently 
of the existence of a magnetic field. Another point which is also carefully 
discussed in ref. 3 is the zero value of the anomalous dimension ~ of both 
.~ and g-, which is a consequence of their definition. Just because ~ = 0 we 
can guarantee that these quantities scale as L ~ and so are preserved during 
the renormalization process. 

4. THE LATTICES A N D  RESULTS 

4.1. Results for S = 1  

In Fig. 1 we show the lattices we have used. In fact, these are the 
smallest ones that could be chosen for a renormalization process. Usually 
the best way to respect the ratio (number of bonds)/(number of sites) = 2 
of the infinite square lattice when using finite lattice approximations is to 
adopt periodic boundary conditions. However, for such tiny lattices, it is 

c o v e r  1/2-- 

1 / 2 ~  
b o t t o m  

~,1/2 > i 1 / 4  

~1/2 01/4 

Fig. 1. The lattices used in the renormalization process and the weights attributed to the 
sites. Also the cover and bottom surfaces are indicated for this square lattice case. 
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more convenient to attribute weights to the sites according to their coor- 
dination number ~9) as shown in Fig. 1. The corresponding renormalization 
group equations are of the form 

~L,(J', ~')= -~L(J, ~ )  (8a) 

and 

~ ~ ' )  = ~ ( J ,  ~ )  (85) 

where the primes are referred to the smallest lattice of size L'. 
In Fig. 2 we show the resulting flow diagram. The attractors of the 

different phases are represented by squares, critical points by dots, and the 
tricritical point by a star. The full line is a second-order critical frontier, the 
dashed line is a first-order one, and the dotted line, as mentioned before, 
separates the usual paramagnetic phase from the "zero phase." 

The critical point at the upper part of the diagram (~  --* ~ )  is related 
to the analysis made in Section 2(iii), and at this point we have found 
Jc =0.4730. It is important to note that we are mainly interested in the 
qualitative features of the phase diagrams, and that with so tiny lattices it 
would not make sense to compare our numerical results to those obtained, 
for instance, through Monte Carlo calculations or conformal invariance 
arguments. ~~ Nevertheless, any predefined numerical accuracy can be 

[- 
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0.00 

-2.00 - 

-4.00 - 
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0.00 

Fig. 2. 
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The FSSRG flow diagram for S =  I. 
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obtained through the present method, simply by using large enough lattices. 
One can, for instance, calculate the quantities .~ and #- through Monte 
Carlo sampling. (~1 

The critical point at J = 0  is related to Section 2(iv), and we have 
found Nc = 0.3478. At the tricritical point we have obtained J r  = 3.5836 and 
@r=  -3.5830,  in agreement with the analysis made in Section 2(ii). 

Considering b the scaling factor and d the dimension of the system, 
we can characterize a first-order transition by the magnetic eigenvalue 
2 = b d calculated at the attractor of the critical line, that is, at the critical 
point that can be seen at the lower right corner of our phase diagram 
( J , - @ - - ,  oo). Taking the limit T ~ 0  ( N < 0 )  in our RG equations, we 
have found 2 = 4 = b d, which ensures that the dashed line represents in fact 
a first-order transition. 

4.2. R e s u l t s  fo r  S=3/2 

I n  this case the Hamiltonian can also be represented by Eq. (2), but 
now with t r ~ = ( S ~ - 5 / 4 ) =  +1  or - 1  for S,.= +3 /2  and S~= +1/2,  
respectively. The same analysis made for the S~= 1 case can be easily 
performed again, and also the same calculation method can be applied. The 

0 . 0 0  - 

- 4 . 0 0  - 

- 8 . 0 0  - 

0.00 
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" ' r ' .  F I 
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0.40 0.80 
J/KT 

. A 

1.20  

Fig. 3. The FSSRG flow diagram for S= 3/2. 
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resulting RG flow diagram is shown in Fig. 3. The phases F, and PI are 
related to S ; =  + 3/2, and F2 and P2 to S~= + 1/2. Again for the magnetic 
eigenvalue calculated at the lower right critical point of the diagram we 
have ,t. = 4 = b d, indicating the first-order character of  the dashed critical 
line. At the upper left critical point ( ~  ~ ~ )  we have found Jc = 0.0525, 
and at the J = 0  critical point, ~c =0 .  At the tetracritical point we have 
JT-= 1.0967 and ~ r = - 8 . 7 8 3 1 .  The lower critical point obtained for 

--. - ov is again the Ising spin-l/2 Onsager value, and we get Jc =0.4730. 

5. C O N C L U D I N G  R E M A R K S  

In summary,  we have calculated the flow diagram of the general 
spin-S Blume-Capel  model for S = 1 and S = 3/2 by means of the FSSRG. 
For  the S =  1 case the results reproduce previous calculations based on 
mean-field approximation as well as other approaches (see ref. 7 and 
references therein). For  the spin-3/2 case new features are presented. The 
flow diagram for this case, as far as we know, has never been shown before. 
In addition, contrary to mean-field results, 17) we show the appearance of a 
tetracritical point in the phase diagram instead of an isolated critical 
endpoint. We remark that the numerical values obtained in these calcula- 
tions are not accurate enough, due to the fact we have used small lattices 
to implement the renormalization process. However, the results are 
expected to be qualitatively correct and improved quantitative values can 
be obtained by the use of larger lattice cells. Finally, the same procedure 
can be applied for other values of spin S. We expect similar qualitative 
behavior as obtained here. 
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